
The Architecture and Datasets of Docear’s
Research Paper Recommender System

Joeran Beel
Otto-von-Guericke University
Dept. of Computer Science

Magdeburg
Germany

beel@ovgu.org

Stefan Langer
Docear

Magdeburg
Germany

langer@docear.org

Bela Gipp
University of California

Berkeley, USA
& National Institute of

Informatics, Tokyo, Japan

gipp@nii.ac.jp

Andreas Nürnberger
Otto-von-Guericke University
Dept. of Computer Science

Magdeburg
Germany

andreas.nuernberger@
ovgu.de

ABSTRACT
In the past few years, we have developed a research paper

recommender system for our reference management software

Docear. In this paper, we introduce the architecture of the

recommender system and four datasets. The architecture comprises

of multiple components, e.g. for crawling PDFs, generating user

models, and calculating content-based recommendations. It supports

researchers and developers in building their own research paper

recommender systems, and is, to the best of our knowledge, the most

comprehensive architecture that has been released in this field. The

four datasets contain metadata of 9.4 million academic articles,

including 1.8 million articles publicly available on the Web; the

articles’ citation network; anonymized information on 8,059 Docear

users; information about the users’ 52,202 mind-maps and personal

libraries; and details on the 308,146 recommendations that the

recommender system delivered. The datasets are a unique source of

information to enable, for instance, research on collaborative

filtering, content-based filtering, and the use of reference-

management and mind-mapping software.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – information filtering.

General Terms
Algorithms, Design, Experimentation

Keywords
Dataset, recommender system, mind-map, reference manager,

framework, architecture

1. INTRODUCTION
Researchers and developers in the field of recommender systems can

benefit from publicly available architectures and datasets1.

Architectures help with the understanding and building of

recommender systems, and are available in various recommendation

domains such as e-commerce [1], marketing [2], and engineering [3].

Datasets empower the evaluation of recommender systems by

enabling that researchers evaluate their systems with the same data.

1 Recommendation frameworks such as LensKit or Mahout may also be

helpful for researchers and developers, but such frameworks are not the

subject of this paper.

Datasets are available in several recommendation domains, including

movies2, music3, and baby names4.

In this paper, we present the architecture of Docear’s research paper

recommender system. In addition, we present four datasets

containing information about a large corpus of research articles, and

Docear’s users, their mind-maps, and the recommendations they

received. By publishing the recommender system’s architecture and

datasets, we pursue three goals.

First, we want researchers to be able to understand, validate, and

reproduce our research on Docear’s recommender system [4–10]: In

our previous papers, we could often not go into detail of the

recommender system due to spacial restrictions. This paper gives the

information on Docear’s recommender system that is necessary to

allow the re-implementation of our approaches and to reproduce our

findings.

Second, we want to support researchers when building their own

research paper recommender systems. Docear’s architecture and

datasets ease the process of designing one’s own system, estimating

the required development times, determining the required hardware

resources to run the system, and crawling full-text papers to use as

recommendation candidates.

Third, we want to provide real-world data to researchers who have

no access to such data. This is of particular importance, since the

majority of researchers in the field of research paper recommender

systems have no access to real-world recommender systems [11].

Our datasets allow analyses beyond the analyses we have already

published, for instance to evaluate collaborative filtering algorithms,

perform citation analysis, or explore the use of reference managers.

This paper will present related work, provide a general overview of

Docear and its recommender system, introduce the architecture, and

present the datasets.

2. RELATED WORK
Several academic services published datasets, and hence have eased

the process of researching and developing research paper

recommender systems. CiteULike5 and Bibsonomy6 published

datasets containing the social tags that their users added to research

2 http://grouplens.org/datasets/movielens/
3 http://labrosa.ee.columbia.edu/millionsong/
4 http://www.kde.cs.uni-kassel.de/ws/dc13/
5 http://www.citeulike.org/faq/data.adp
6 https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/

Bibliographic Details Related Work Authors’ Details BibTeX, EndNote…

http://www.docear.org/docear/research-activities/#pdfrelatedwork

articles. The datasets were not originally intended for recommender

system research but are frequently used for this purpose [12–14].

CiteSeer made its corpus of research papers public7, as well as the

citation graph of the articles, data for author name disambiguation,

and the co-author network [15]. CiteSeer’s dataset has been

frequently used by researchers for evaluating research paper

recommender systems [12], [14], [16–22]. Kris Jack et al. compiled

a dataset based on the reference management software Mendeley

[23]. The dataset includes 50,000 randomly selected personal

libraries from 1.5 million users. These 50,000 libraries contain 4.4

million articles with 3.6 million of them being unique. For privacy

reasons, Jack et al. only publish unique IDs of the articles and no title

or author names. In addition, only those libraries having at least 20

articles were included in the dataset. Sugiyama and Kan released two

small datasets8, which they created for their academic recommender

system [24]. The datasets include some research papers, and the

interests of 50 researchers. The CORE project released a dataset9

with enriched metadata and full-texts of academic articles, and that

could be helpful in building a recommendation candidate corpus.

Architectures of research paper recommender systems have only

been published by a few authors. The developers of the academic

search engine CiteSeer(x) published an architecture that focused on

crawling and searching academic PDFs [25], [26]. This architecture

has some relevance for recommender systems since many task in

academic search are related to recommender systems (e.g. crawling

and indexing PDFs, and matching user models or search-queries

with research papers). Bollen and van de Sompel published an

architecture that later served as the foundation for the research paper

recommender system bX [27]. This architecture focuses on

recording, processing, and exchanging scholarly usage data. The

developers of BibTiP [28] also published an architecture that is

similar to the architecture of bX (both bX and BibTip utilize usage

data to generate recommendations).

3. DOCEAR AND ITS RECOMMENDER

SYSTEM
Docear is an open source literature suite for organizing references

and PDFs, including the PDFs’ annotations. Docear is available for

Windows, Mac OS, and Linux and offers a recommender system for

publicly available research papers on the Web. In contrast to most

other reference managers, Docear uses mind-maps for the

information management. Figure 1 shows a screenshot depicting the

management of PDFs in Docear, including annotations. A user can

create several categories (e.g. “Academic Search Engines”) and sub-

categories (e.g. “Google Scholar”). Each category contains a number

of PDFs, and for each PDF, its annotations that are made by the user

– e.g. highlighted text, comments, and bookmarks – are displayed. If

the cursor is moved over a PDF or annotation, the PDF’s

bibliographic data such as the title and authors, is shown.

For the remainder of this paper, it is important to note that each

element in the mind-map – i.e. each category, PDF, or annotation –

is called a “node”. Each node has some descriptive text (e.g. the

category label or PDF’s file name), an option to a link to a file or

web page (a click on the node opens the linked file or web page), and

some further attributes such as the bibliographic data. For each node,

the dates when the node was created, modified, and moved are

7 http://csxstatic.ist.psu.edu/about/data
8 http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
9 http://core.kmi.open.ac.uk/intro/data_dumps

stored. If a node links to a PDF, the PDF’s title is extracted and

stored as an invisible attribute to the node. A “circle” on a node

indicates that the node has child nodes but that they are currently

hidden in the mind-map.

Figure 1: Screenshot of Docear

Figure 2: User-interface of Docear's recommender system

Every five days, recommendations are displayed to the users at the

start-up of Docear. In addition, users may explicitly request

recommendations at any time. Docear displays recommendations as

a set of ten research papers, as long as ten papers are available to

recommend, otherwise less recommendations are shown (Figure 2).

A click on a recommendation opens the PDF in the user’s web

browser. Users can rate each recommendation set on a scale of one

to five. The rating is then used to evaluate the effectiveness of

different recommendation algorithms.

4. ARCHITECTURE
Docear itself is a JAVA desktop software with its source code hosted

on GitHub10. The recommender system is also primarily written in

JAVA and runs on our web servers. The source code is not (yet)

publicly available. To enable communication between the Desktop

software and the servers, we implemented a RESTful Web Service.

Figure 3 illustrates the architecture and the particular components,

which are explained in detail in the following sections, along with

technical details.

10 https://github.com/Docear/

Figure 3: Architecture of Docear's research paper recommender system

4.1 Web Service / API
Docear’s RESTful Web Service (Jersey)11 is responsible for several

tasks, including user registration and delivering recommendations. In

Table 1, the most important methods relating to recommendations

are listed. Third parties could use the Web Service, for instance, to

request recommendations for a particular Docear user and to use the

recommendations in their own application (if the third party knew

the user’s username and password). However, it should be noted

that, for now, we developed the Web Service only for internal use,

that there is no documentation available, and that the URLs might

change without prior notification.

Table 1: POST and GET requests for Docear's web service

Task URL Type

Upload a mind-

map

https://api.docear.org/user/{username}

/mindmaps/

POST

Request

recommendations

https://api.docear.org/user/{username}

/recommendations/

GET

Confirm the

receipt of

recommendations

https://api.docear.org/user/{username}

/recommendations/{recommendationsS

etId}

POST

Download a

recommended

paper

https://api.docear.org/
user/{username}/recommendations/full

text/{hash}

GET

Send rating https://api.docear.org/user/{username}
/recommendations/{recommendationsS

etId}

POST

4.2 Building the corpus
The Spider crawls the Web for academic PDF files, which serve as

recommendation candidates. Each PDF is converted into text, and

the header information and citations are extracted. The text

conversion is done with jPod12, a PDF library we found to be more

effective than the commonly used PDFBox. The header extraction is

done with ParsCit13 and Docear’s PDF Inspector [29]. The citation

extraction is also conducted with ParsCit, which we modified to

identify the citation position within a text14. Once all information is

extracted, it is indexed with Apache Lucene15 and stored in Lucene’s

file-based data storage.

Instead of indexing the original citation placeholder with [1], [2],

etc. the unique Docear ID of the cited document is indexed (e.g.

dcr_doc_id_54421) (Figure 4). This allows to apply weighting

schemes, such as TF-IDF to citations, i.e. CC-IDF [25], and

searching with Lucene for documents that cite a certain paper. It also

allows for the matching of user models and recommendation

candidates based on terms and citations at the same time. For

instance, a user model could consist of the terms and citation

“cancer, sun, dcr_doc_id_54421, skin” and those papers would be

recommended that contain the terms cancer, sun and skin and that

cite the document dcr_doc_id_54421.

In addition to the papers that were found by the Spider, we selected a

few papers manually and added them to the corpus of

11 http://jersey.java.net
12 http://sourceforge.net/projects/jpodlib/
13 http://aye.comp.nus.edu.sg/parsCit/
14 Meanwhile, our modifications were integrated into ParsCit.
15 http://lucene.apache.org

recommendation candidates. These papers are about academic

writing and search, i.e. topics we assume to be relevant for the

majority of our users. These papers are recommended with the

stereotype approach, which is later explained in detail.

4.3 Collecting information about users
Docear’s recommender system needs access to the users’ data, i.e.

their mind-maps, to be able to infer the users’ information needs. To

get access to the users’ mind-maps, Docear stores a copy of the

mind-maps in a temporary folder on the users’ hard drive, whenever

a mind-map was modified and saved by the user. Every five minutes

– or when Docear starts – Docear sends all mind-maps located in the

temporary folder to the Web Service. The Web Service forwards

these mind-maps, i.e. XML files, to the Mind-Map Parser (JAVA),

which is based on nanoXML16. All nodes of the mind-maps,

including attributes (text, links to files, titles of linked PDFs, and

bibliographic data) are extracted from the XML file and stored in a

graph database (neo4j17). Citations in the mind-maps are replaced

with the corresponding Docear-IDs, similarly to the replace-process

of citations in the research articles (see section 4.2 and Figure 4). A

‘citation’ in a mind-map can either be a link to a PDF file, or the

bibliographic data that is attached to a node. This means, if a node in

a mind-map links a PDF on the user’s hard drive, the PDF is

identified (via its title) and the link in the mind-map is replaced with

the Docear-ID of the cited article, linked PDF respectively. If the

cited article is not already in Docear’s database, the article is added

and a new Docear-ID is created.

Figure 4: Converting in-text citations to Docear-IDs

4.4 Generating user models &

recommendations
The recommendation engine (JAVA) is the central part of Docear’s

recommender system. It creates new user models and

recommendations whenever new mind-maps are uploaded to the

server or after recommendations have been delivered to a user.

Generating recommendations in advance has the disadvantage that a

significant amount of computing time is wasted. Of 1.4 million

generated recommendations, only 308,146 recommendations

(21.3%) were delivered to the users. In other words, 79.7% of the

computing power could have been saved if recommendations were

16 http://nanoxml.sourceforge.net/orig/
17 http://www.neo4j.org/

only created when they actually were needed. However, on average,

it took 52 seconds to calculate one set of recommendations with a

standard deviation of 118 seconds, and users would probably not

want to wait so long for receiving recommendations. This rather long

computing time is primarily caused by the many statistics that we

calculate for each set of recommendations, along with a few

algorithms that require intensive computing power. We also run

several additional services on the recommendation servers that

require a lot of computing power (e.g. PDF processing), and this

slows down the recommendation process. If we would disable

statistics, concentrate on a few algorithms, and use a dedicated server

for the recommender system, it should be possible to generate

recommendations in real-time. However, since we need the statistics,

and want to evaluate different variations of the recommendation

approaches, pre-generating recommendation seems the most feasible

solution to us.

Docear’s recommender system applies two recommendation

approaches, namely stereotype recommendations and content-based

filtering (CBF). Every time the recommendation process is triggered,

one of these approaches is randomly chosen.

The stereotype approach [30] is chosen with a probability of 1%. It

generalizes over all users, and assumes that they are all researchers

(which is not exactly true, because some users only use Docear for

its mind-mapping functionality). The recommender system then

recommends papers that are potentially interesting for researchers,

i.e. the books and research articles about academic writing that we

manually added to the corpus (see 4.2). Compiling the stereotype

recommendations requires a lot of labor and we primarily did this to

use the results as a baseline to compare the CBF performance against

it [31].

The content-based filtering approach analyzes the users’ mind-maps

and recommends research papers whose content is similar to the

content of the mind-maps. ‘Similarity’ is based on the number of

terms or citations that user-models and research papers have in

common. The user modeling process varies by a number of variables

that are stored in the algorithms database (MySQL & Hibernate18).

These variables are randomly arranged to assemble the final user-

modeling algorithm, each time recommendations are generated. In

the first step, the feature type to use from the mind-maps is randomly

chosen. The feature type may be terms, citations, or both. Then, a

number of other variables are chosen such as the number of mind-

maps to analyze, the number of features the user model should

contain, and the weighting scheme for the features. For instance, one

randomly arranged algorithm might utilize the one hundred most

recently created citations in the user’s mind-maps, weight the

citations with CC-IDF, and store the five highest weighted citations

as a user model. Another algorithm might utilize all the terms from

the two most recently created mind-maps, weight terms based on

term frequency and store the 50 highest weighted terms as user

model.

The user model is represented by a list of terms and/or citations that

are supposed to describe the user’s information needs. The user-

modeling engine randomly chooses whether to store the user model

as a weighted or un-weighted list in the database. An un-weighted

list is a plain list of terms or citations such as sun, skin,

dcr_doc_id_54421, cancer ordered by the terms’ and citations’

weight (the features are always sorted by weight, but the weight is

18 http://hibernate.org/

discarded when storing the user model). The weighted-list is a vector

in which the weights of the individual features are stored, in addition

to the features themselves. Docear uses both weighted and un-

weighted lists to research the differences in their effectiveness.

The matching module is responsible for finding the appropriate

recommendations for a given user model. To match user models and

recommendation candidates, Apache Lucene is used, i.e. the user

model is sent as a search query to Lucene. From Lucene’s top 50

search results, a set of ten papers is randomly selected as

recommendations. Choosing papers randomly from the top 50 results

decreases the overall relevance of the delivered recommendations,

yet increases the variety of recommendations, and allows for the

analyzing of how relevant the search results of Lucene are at

different ranks. The exact matching algorithm is randomly arranged.

Among others, the field at which the candidates Lucene should

search for is randomly chosen, for instance in the title only, or in the

candidates’ full-text.

Once the recommendations are created, they are stored in the

recommendation database (MySQL & Hibernate). The system stores

for which user the recommendations were generated, by which

algorithm, as well as some statistical information such as the time

required to generate recommendations and the original Lucene

ranking. The recommendations are not yet delivered to the user but

only stored in the database.

4.5 Delivering recommendations
To display recommendations to a user, the Docear desktop software

sends a request to the Web Service. The Web Service retrieves the

latest created recommendations and returns them to Docear, which

displays the recommendations to the user. The Web Service stores

some statistics, such as when the recommendations where requested

and from which Docear version. After recommendations are

displayed to the user, a new set of recommendations is generated.

Each recommendation set receives a label that is displayed in Docear

above the recommendations (Figure 2). Some labels such as "Free

research papers" indicate that the recommendations are free and

organic. Other labels such as "Research papers (Sponsored)" indicate

that the recommendations are given for commercial reasons. For

each user, the label is randomly chosen, when the user registers. The

label has no effect on how the recommendations are actually

generated. We randomly assign labels only to research the effect of

different labels on user satisfaction. For more information refer to

[4].

When users click on a recommendation, a download request is sent

to Docear’s Web Service. The Web Service again stores some

statistics, such as the time when the user clicked the

recommendation. Then the user is forwarded to the original URL of

the recommended paper. Forwarding has the disadvantage that

papers occasionally are not available any more at the time of the

recommendation since they were removed from the original web

server. However, caching PDFs and offering them directly from

Docear’s servers might have led to problems with the papers’

copyright holders.

4.6 Offline evaluation
The Offline Evaluator (JAVA) runs occasionally to evaluate the

effectiveness of the different algorithms. The offline evaluator

creates a copy of the users’ mind-maps and removes that citation that

was most recently added to the mind-maps. In addition, all nodes

from the copy are removed that were created after the most recent

citation was added. The offline evaluator then selects a random

algorithm and creates recommendations for the users. The offline

evaluator checks if the removed citation is contained in the list of

recommendations and stores this information in the database. It is

assumed that if an algorithm could recommend the removed citation,

the algorithm was effective. The more often an algorithm could

recommend a removed citation, the more effective it is. For more

details on the offline evaluator, and potential shortcomings of offline

evaluations, refer to [5].

4.7 Technical details
The recommender system runs on two servers. The first server is an

Intel Core i7 PC with two 120GB SSDs, one 3 TB HDD, and 16 GB

RAM. It runs the PDF Spider, PDF Analyzer, and the mind-map

database (neo4j), and its load is usually high, because web crawling

and PDF processing require many resources. The second server is an

Intel Core i7 with two 750 GB HDDs, and 8 GB RAM. It runs all

other services including the Web Service, mind-map parser, MySQL

database, Lucene, and the offline evaluator. The server load is rather

low on average, which is important, because the Web Service is not

only needed for recommendations but also for other tasks such as

user registration. While long response times, or even down times, for

e.g. the PDF spider are acceptable, user registration should always be

available. Overall, we invested around 14 person-months

development time in the past three years to implement the

recommender system19. This estimate does not include the

development time for the Docear Desktop software.

5. DATASETS
We publish four datasets relating to the research papers that Docear’s

spider found on the web (see 5.1), the mind-maps of Docear’s users

(see 5.2), the users themselves (5.3), and the recommendations

delivered to the users (see 5.4). Due to spacial restrictions, the

following sections provide only an overview of the most important

data, particularly with regard to the randomly chosen variables.

Please note that all variables are explained in detail in the readme

files of the datasets. For an empirical evaluation of the different

variables please refer to [31], or analyze the datasets yourself. All

datasets are available at http://labs.docear.org.

5.1 Research papers
The research papers dataset contains information about the research

papers that Docear’s PDF Spider crawled, and their citations.

The file papers.csv contains information about 9.4 million research

articles. Each article has a unique document id, a title, a cleantitle,

and for 1.8 million articles, a URL to the full-text is provided. The

1.8 million documents were found by Docears PDF Spider, and for

each of these documents, titles were extracted with Docear’s PDF

Inspector or parsed from the web page that linked the PDF. The

remaining 7.6 million documents in the dataset were extracted from

the 1.8 million documents’ bibliographies. In this case, no full-text

URL is available and the document’s title was extracted from the

bibliography with ParsCit. Based on a small random sample of 100

documents, we estimate that 71% of the articles are written in

English. Other languages include German, Italian, Russian, and

Chinese. It also appears that the papers cover various disciplines, for

instance, social sciences, computer science, and biomedical sciences.

However, several of the indexed documents are of non-academic

19 This is a very rough estimate, as we did not keep track of the exact working

hours for the recommender system.

nature, and sometimes, entire proceedings were indexed but only the

first paper was recognized.

Document disambiguation is only based on the documents’

“cleantitle”. To generate a cleantitle, all characters are transformed to

lowercase, and only ASCII letters from a to z are kept. If the

resulting cleantitle is less than half the size of the original title, the

original title is used as cleantitle – this prevents e.g. Chinese titles to

be shortened to a string of length zero. If two documents have the

same cleantitle, the documents are assumed identical. Comparing

documents only based on such a simplified title is certainly not very

sophisticated but it proved to be sufficiently effective for our needs.

The file citations.csv contains a list of 572,895 papers with 7.95

million citations. These numbers mean that of the 1.8 million PDFs,

572,895 PDFs could be downloaded and citations could be extracted,

and on average, each of the PDFs contained around 14 references.

The dataset also contains information where citations occur in the

full-texts. For each citing->cited document pair, the position of a

citation is provided in terms of character count, starting from the

beginning of the document. This leads to 19.3 million entries in

citations.csv, indicating that, on average, each cited paper is cited

around three times in a citing document. The dataset allows building

citation networks and hence calculating document similarities, or the

document impact. Since the position of the citations is provided,

document similarity based on citation proximity analysis could be

calculated, which we developed during the past years [32] and which

is an extension of co-citation analysis.

Due to copyright reasons, full-texts of the articles are not included in

the dataset. Downloading the full-text is easily possible, since the

URLs to the PDFs are included (as long as the PDFs are still

available on the Web).

5.2 Mind-maps / user libraries
Every month, 3,000 to 4,000 newly created and modified mind-maps

are uploaded to Docear’s server. Some mind-maps are uploaded for

backup purposes, but most mind-maps are uploaded as part of the

recommendation process. Information on the latter ones is provided

in the mind-map dataset.

The file mindmaps.csv contains information on 52,202 mind-maps

created by 12,038 users who agreed that we could publish their

information. Docear does not only store the latest version of a mind-

map but keeps each revision. Information about 390,613 revisions of

the 52,202 mind-maps is also included in mindmaps.csv. This means,

on average there are around seven to eight revisions per mind-map.

All mind-maps and revisions in the dataset were created between

March 2012 and March 2014. There are three different types of

mind-maps. First, there are mind-maps in which users manage

academic PDFs, annotations, and references (Figure 1). These mind-

maps represent data similar to the data included in the Mendeley

dataset (see section 2). While Mendeley uses the term “personal

libraries” to describe a collection of PDFs and references, Docear’s

“mind-maps” represent also collections of PDFs and references but

with a different structure than the ones of Mendeley. Second, there

are mind-maps to draft assignments, research papers, theses, or

books (Figure 2). These mind-maps differ from the first type as they

typically contain only few PDFs and references, but they include

additional data such as images, LaTeX formulas, and more text. The

third type of mind-maps, are “normal” mind-maps that users create

to brainstorm, manage tasks, or organize other information. Due to

privacy concerns, this dataset does not contain the mind-maps

themselves but only metadata. This includes a list of all the mind-

maps and revisions, their file sizes, the date they were created, and to

which user they belong. The data may help to analyze how often

http://labs.docear.org/

researchers are using reference management software, for how long

they are using it, and how many papers they manage in their mind-

maps, personal collections respectively.

The file mindmaps-papers.csv contains a list 473,538 papers that are

linked eight million times in 12,994 mind-maps. This means, of the

52,202 mind-maps, 24.8% contain at least one link to a PDF, and

PDFs are linked 17 times in a mind-map on average. The paper IDs

in mindmaps-papers.csv are anonymized and do not correlate with

paper IDs from the research paper dataset, nor does mindmaps-

papers.csv contain titles of the linked papers. It should also be noted

that the 473,538 papers are not necessarily contained in papers.csv as

papers.csv contains only information of the publicly available PDFs

and their citations. These limitations were made to ensure the

privacy of our users.

5.3 Users
There are three types of users in Docear, namely registered users,

local users, and anonymous users. Local users chose not to register

when they install Docear. Consequently, they cannot use Docear’s

online services such as recommendations or online backup, and we

do not have any information about these users, nor do we know how

many local users there are. Registered users sign-up with a

username, a password, and an email address and they can use

Docear’s online services. During the registration process, these users

may provide information about their age and gender. Between March

2012 and March 2014, around 1,000 users registered every month,

resulting in 21,439 registered users. Anonymous users decline to

register but still want to use some of Docear’s online services. In this

case, Docear automatically creates a user account with a randomly

selected user name that is tied to a users’ computer. Anonymous

users cannot login on Docear’s website, but they can receive

recommendations as their mind-maps are transferred to Docear’s

servers, if they wish to receive recommendations. Due to spam

issues, no new anonymous users were allows since late 2013. Until

then, around 9,500 anonymous user accounts were created by non-

spammers.

The file users.csv contains anonymized information about 8,059 of

the 21,439 registered users, namely about those who activated

recommendations and agreed to have their data analyzed and

published. Among others, the file includes information about the

users’ date of registration, gender, age (if provided during

registration), usage intensity of Docear, when Docear was last

started, when recommendations were last received, the number of

created mind-maps, number of papers in the user’s mind-maps, how

recommendations were labeled, the number of received

recommendations, and click-through rates (CTR) on

recommendations. The CTR expresses the ratio of received and

clicked recommendations. If a user receives 100 recommendations,

and clicked eight of them, CTR is 8%. CTR is a common

performance measure in online advertisement and recommender

systems evaluation and allows for the analyzing of the effectiveness

of recommendation algorithms.

The file users_papers.csv contains a list of 6,726 users and 616,651

papers that the users have in their collections, i.e. mind-maps. This

means, on average, each user has linked or cited 92 documents in his

or her mind-maps. The paper IDs in users_papers.csv do not

correlate with the IDs from the research paper dataset, to ensure the

users’ privacy.

The users-dataset may help to identify how differences between

users affect users’ satisfaction with recommendations. For instance,

we found that older users are more likely to click on

recommendations than younger users [8], and that the labelling of

recommendations has an effect on user satisfaction [4]. The dataset

also allows analyses about the use of reference managers, for

instance, how intensive researchers are using Docear.

Figure 5: Screenshot of a research paper draft in Docear

5.4 Recommendations
Between March 2013 and March 2014, Docear delivered 31,935

recommendation sets with 308,146 recommendations to 3,470 users.

Of the delivered sets, 38.7% were explicitly requested by the users.

The remaining 62.2% were delivered automatically when the Docear

Desktop software was started. Among the 308,146

recommendations, there were 147,135 unique documents. In other

words, from Docear’s 1.8 million documents, 9% were actually

recommended. The recommendation dataset splits into two files.

The file recommendation_sets.csv contains information about the

31,935 delivered recommendation sets. This includes the number of

recommendations per set (usually ten), how many recommendations

were clicked, the date of creation and delivery, the time required to

generate the set and corresponding user models, and information on

the algorithm that generated the set. There is a large variety in the

algorithms. We stored whether stop words were removed, which

weighting scheme was applied, whether terms and/or citations were

used for the user modelling process, and several other variables were

applied that are described in more detail in the dataset’s readme file.

The file recommendations.csv contains information about the

308,146 recommendations that Docear delivered. This information

includes all details contained in recommendation_sets.csv and

additional information, such as at which position a recommendation

was shown, and which document was recommended (again, we

anonymized the paper IDs).

6. SUMMARY & FINAL REMARKS
In this paper, we presented the architecture of Docear’s research

paper recommender system, and introduced four datasets containing

metadata about research articles, and information about Docear’s

users, their mind-maps, and the recommendations they received.

Docear’s architecture is unique in the domain of research paper

recommendations. Most of the previously published architectures are

rather brief, and architectures such as those of bX and BibTip focus

on co-occurrence based recommendations. These approaches are

primarily relevant for recommender systems with many users.

Docear’s architecture is comprehensive, explaining the individual

components, the required hardware, and the integrated software

libraries. Hence, the architecture should provide a good introduction

for new researchers and developers on how to build a research paper

recommender system. Due to the focus on content-based filtering,

the architecture is also relevant for building recommender systems

for rather few users.

The datasets are also unique. While the research paper dataset is

rather small, and the metadata is probably of a rather low quality, the

dataset contains 1.8 million URLs to freely accessible full-text

articles that are from various research fields and languages, and the

dataset contains information where citations in a paper occur. The

mind-map dataset is smaller than the dataset e.g. of Mendeley, but it

was not pruned, and hence allows for analyses for users with less

than 20 papers in their collections. The dataset also contains the

information of how often a paper occurs in a mind-map. This

information could be used to infer implicit ratings that are not only

binary (linked/not linked) but to weight the implicit rating. The

datasets about Docear’s users and recommendations contain

extensive information, among others, about users’ demographics, the

number of received and clicked recommendations, and specifics

about the algorithms that recommendations were created with. This

data allows for analyses that go beyond those that we already

performed, and should provide a rich source of information for

researchers, who are interested in recommender systems or the use of

reference managers.

For the future, we plan to release updated datasets annually or bi-

annually, and we invite interested researchers to contact us for

cooperation.

7. REFERENCES
[1] L. Palopoli, D. Rosaci, and G. M. Sarné, “A Multi-tiered

Recommender System Architecture for Supporting E-

Commerce,” in Intelligent Distributed Computing VI,

Springer, 2013, pp. 71–81.

[2] Y.-L. Lee and F.-H. Huang, “Recommender system

architecture for adaptive green marketing,” Expert Systems

with Applications, vol. 38, no. 8, pp. 9696–9703, 2011.

[3] M. E. Prieto, V. H. Menéndez, A. A. Segura, and C. L.

Vidal, “A recommender system architecture for instructional

engineering,” in Emerging Technologies and Information

Systems for the Knowledge Society, Springer, 2008, pp. 314–

321.

[4] J. Beel, S. Langer, and M. Genzmehr, “Sponsored vs.

Organic (Research Paper) Recommendations and the Impact

of Labeling,” in Proceedings of the 17th International

Conference on Theory and Practice of Digital Libraries

(TPDL 2013), 2013, pp. 395–399.

[5] J. Beel, S. Langer, M. Genzmehr, B. Gipp, and A.

Nürnberger, “A Comparative Analysis of Offline and Online

Evaluations and Discussion of Research Paper

Recommender System Evaluation,” in Proceedings of the

Workshop on Reproducibility and Replication in

Recommender Systems Evaluation (RepSys) at the ACM

Recommender System Conference (RecSys), 2013, pp. 7–14.

[6] J. Beel, S. Langer, M. Genzmehr, and A. Nürnberger,

“Persistence in Recommender Systems: Giving the Same

Recommendations to the Same Users Multiple Times,” in

Proceedings of the 17th International Conference on Theory

and Practice of Digital Libraries (TPDL 2013), 2013, vol.

8092, pp. 390–394.

[7] J. Beel, S. Langer, M. Genzmehr, and A. Nürnberger,

“Introducing Docear’s Research Paper Recommender

System,” in Proceedings of the 13th ACM/IEEE-CS Joint

Conference on Digital Libraries (JCDL’13), 2013, pp. 459–

460.

[8] J. Beel, S. Langer, A. Nürnberger, and M. Genzmehr, “The

Impact of Demographics (Age and Gender) and Other User

Characteristics on Evaluating Recommender Systems,” in

Proceedings of the 17th International Conference on Theory

and Practice of Digital Libraries (TPDL 2013), 2013, pp.

400–404.

[9] J. Beel and B. Gipp, “Link analysis in mind maps: a new

approach to determining document relatedness,” in

Proceedings of the 4th International Conference on

Ubiquitous Information Management and Communication

(ICUIMC ’10), 2010, pp. 38:1–38:5.

[10] J. Beel, S. Langer, M. Genzmehr, and B. Gipp, “Utilizing

Mind-Maps for Information Retrieval and User Modelling,”

in Proceedings of the 22nd Conference on User Modelling,

Adaption, and Personalization (UMAP), 2014, vol. 8538, pp.

301–313.

[11] J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and

A. Nürnberger, “Research Paper Recommender System

Evaluation: A Quantitative Literature Survey,” in

Proceedings of the Workshop on Reproducibility and

Replication in Recommender Systems Evaluation (RepSys) at

the ACM Recommender System Conference (RecSys), 2013,

pp. 15–22.

[12] W. Huang, S. Kataria, C. Caragea, P. Mitra, C. L. Giles, and

L. Rokach, “Recommending citations: translating papers into

references,” in Proceedings of the 21st ACM international

conference on Information and knowledge management,

2012, pp. 1910–1914.

[13] P. Jomsri, S. Sanguansintukul, and W. Choochaiwattana, “A

framework for tag-based research paper recommender

system: an IR approach,” in Proceedings of the 24th

International Conference on Advanced Information

Networking and Applications (WAINA),, 2010, pp. 103–108.

[14] L. Rokach, P. Mitra, S. Kataria, W. Huang, and L. Giles, “A

Supervised Learning Method for Context-Aware Citation

Recommendation in a Large Corpus,” in Proceedings of the

Large-Scale and Distributed Systems for Information

Retrieval Workshop (LSDS-IR), 2013, pp. 17–22.

[15] S. Bhatia, C. Caragea, H.-H. Chen, J. Wu, P. Treeratpituk, Z.

Wu, M. Khabsa, P. Mitra, and C. L. Giles, “Specialized

Research Datasets in the CiteSeerx Digital Library,” D-Lib

Magazine, vol. 18, no. 7/8, 2012.

[16] C. Caragea, A. Silvescu, P. Mitra, and C. L. Giles, “Can’t

See the Forest for the Trees? A Citation Recommendation

System,” in iConference 2013 Proceedings, 2013, pp. 849–

851.

[17] R. Dong, L. Tokarchuk, and A. Ma, “Digging Friendship:

Paper Recommendation in Social Network,” in Proceedings

of Networking & Electronic Commerce Research

Conference (NAEC 2009), 2009, pp. 21–28.

[18] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles, “Context-

aware citation recommendation,” in Proceedings of the 19th

international conference on World wide web, 2010, pp. 421–

430.

[19] S. Kataria, P. Mitra, and S. Bhatia, “Utilizing context in

generative bayesian models for linked corpus,” in

Proceedings of the 24th AAAI Conference on Artificial

Intelligence, 2010, pp. 1340–1345.

[20] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles,

“Collaborative filtering by personality diagnosis: A hybrid

memory-and model-based approach,” in Proceedings of the

Sixteenth conference on Uncertainty in artificial intelligence,

2000, pp. 473–480.

[21] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J.

Riedl, “Enhancing digital libraries with TechLens+,” in

Proceedings of the 4th ACM/IEEE-CS joint conference on

Digital libraries, 2004, pp. 228–236.

[22] F. Zarrinkalam and M. Kahani, “SemCiR - A citation

recommendation system based on a novel semantic distance

measure,” Program: electronic library and information

systems, vol. 47, no. 1, pp. 92–112, 2013.

[23] K. Jack, M. Hristakeva, R. G. de Zuniga, and M. Granitzer,

“Mendeley’s Open Data for Science and Learning: A Reply

to the DataTEL Challenge,” International Journal of

Technology Enhanced Learning, vol. 4, no. 1/2, pp. 31–46,

2012.

[24] K. Sugiyama and M.-Y. Kan, “Scholarly paper

recommendation via user’s recent research interests,” in

Proceedings of the 10th ACM/IEEE Annual Joint

Conference on Digital Libraries (JCDL), 2010, pp. 29–38.

[25] K. D. Bollacker, S. Lawrence, and C. L. Giles, “CiteSeer: An

autonomous web agent for automatic retrieval and

identification of interesting publications,” in Proceedings of

the 2nd international conference on Autonomous agents,

1998, pp. 116–123.

[26] Y. Petinot, C. L. Giles, V. Bhatnagar, P. B. Teregowda, H.

Han, and I. Councill, “A service-oriented architecture for

digital libraries,” in Proceedings of the 2nd international

conference on Service oriented computing, 2004, pp. 263–

268.

[27] J. Bollen and H. Van de Sompel, “An architecture for the

aggregation and analysis of scholarly usage data,” in

Proceedings of the 6th ACM/IEEE-CS joint conference on

Digital libraries, 2006, pp. 298–307.

[28] A. Geyer-Schulz, M. Hahsler, and M. Jahn,

“Recommendations for virtual universities from observed

user behavior,” in Proceedings of the 24th Annual

Conference of the Gesellschaft für Klassifikation e.V., 2002,

pp. 273–280.

[29] J. Beel, S. Langer, M. Genzmehr, and C. Müller, “Docears

PDF Inspector: Title Extraction from PDF files,” in

Proceedings of the 13th ACM/IEEE-CS Joint Conference on

Digital Libraries (JCDL’13), 2013, pp. 443–444.

[30] E. Rich, “User modeling via stereotypes,” Cognitive science,

vol. 3, no. 4, pp. 329–354, 1979.

[31] J. Beel, S. Langer, and G. M. Kapitsaki, “Mind-Map based

User Modelling and Research Paper Recommendations,” in

Under Review. Pre-print available at

http://www.docear.org/publications/.

[32] B. Gipp and J. Beel, “Citation Proximity Analysis (CPA) - A

new approach for identifying related work based on Co-

Citation Analysis,” in Proceedings of the 12th International

Conference on Scientometrics and Informetrics (ISSI’09),

2009, vol. 2, pp. 571–575.

Additional Information

Bibliographic Data

Joeran Beel, Stefan Langer, Bela Gipp, Andreas Nürnberger. “The
Architecture and Datasets of Docear’s Research Paper Recommender
System.” D-Lib Magazine – The Magazine of Digital Library Research,
vol. 20, 11/12, 2014.

Original Article http://www.dlib.org/dlib/november14/beel/11beel.html

Preprint http://docear.org/papers/2014-docear_architecture_datasets.pdf

Related Work http://docear.org/docear/research-activities/

Academic
Platforms

Authors Joeran Beel

 Stefan Langer

 Bela Gipp

 Andreas Nürnberger

BibTeX @ARTICLE{Beel2014b,
 author = {Joeran Beel and Stefan Langer and Bela Gipp and Andreas Nürnberger},
 title = {The Architecture and Datasets of Docear’s Research Paper Recommender System},
 journal = {D-Lib Magazine},
 year = {2014},
 volume = {20},
 number = {11/12},
 doi = {10.1045/november14-beel},
}

RefMan (RIS) TY - JOUR
T1 - The Architecture and Datasets of Docear's Research Paper Recommender System
A1 - Beel, Joeran
A1 - Langer, Stefan
A1 - Gipp, Bela
A1 - Nürnberger, Andreas
JO - D-Lib Magazine
VL - 20
IS - 11
SP - 1
SN - 1082-9873
Y1 - 2014
PB - Corporation for National Research Initiatives
ER -

EndNote %0 Journal Article
%T The Architecture and Datasets of Docear's Research Paper Recommender System
%A Beel, Joeran
%A Langer, Stefan
%A Gipp, Bela
%A Nürnberger, Andreas
%J D-Lib Magazine
%V 20
%N 11
%P 1
%@ 1082-9873
%D 2014
%I Corporation for National Research Initiatives

http://www.dlib.org/dlib/november14/beel/11beel.html
http://docear.org/papers/2014-docear_architecture_datasets.pdf
http://docear.org/docear/research-activities/#lastpagerelatedwork
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jyXACVcAAAAJ&cstart=20&pagesize=80&citation_for_view=jyXACVcAAAAJ:-uzm3Y7AvW0C
https://www.mendeley.com/catalog/architecture-datasets-docears-research-paper-recommender-system/
https://www.researchgate.net/publication/265412702_The_Architecture_and_Datasets_of_Docear%27s_Research_Paper_Recommender_System
http://www.citeulike.org/user/joeran/article/14018074
https://www.academia.edu/24648753/The_Architecture_and_Datasets_of_Docears_Research_Paper_Recommender_System
http://beel.org/
https://scholar.google.com/citations?user=jyXACVcAAAAJ
https://www.mendeley.com/profiles/joeran-beel/
https://www.researchgate.net/profile/Joeran_Beel2
http://orcid.org/0000-0002-4537-5573
https://nii-jp.academia.edu/JoeranBeel
http://www.dke-research.de/mitarbeiter.html
https://www.researchgate.net/profile/Stefan_Langer3
http://gipp.com
https://scholar.google.com/citations?user=No2ot2YAAAAJ
https://www.mendeley.com/profiles/bela-gipp/
https://www.researchgate.net/profile/Bela_Gipp
https://berkeley.academia.edu/BelaGipp
http://www.findke.ovgu.de/nuernberger.html
https://scholar.google.com/citations?user=LuMoBX0AAAAJ
https://www.mendeley.com/profiles/andreas-nurnberger/
https://www.researchgate.net/profile/Andreas_Nuernberger
http://orcid.org/0000-0003-4311-0624

