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ABSTRACT 
In the past few years, we have developed a research paper 

recommender system for our reference management software 

Docear. In this paper, we introduce the architecture of the 

recommender system and four datasets. The architecture comprises 

of multiple components, e.g. for crawling PDFs, generating user 

models, and calculating content-based recommendations. It supports 

researchers and developers in building their own research paper 

recommender systems, and is, to the best of our knowledge, the most 

comprehensive architecture that has been released in this field. The 

four datasets contain metadata of 9.4 million academic articles, 

including 1.8 million articles publicly available on the Web; the 

articles’ citation network; anonymized information on 8,059 Docear 

users; information about the users’ 52,202 mind-maps and personal 

libraries; and details on the 308,146 recommendations that the 

recommender system delivered. The datasets are a unique source of 

information to enable, for instance, research on collaborative 

filtering, content-based filtering, and the use of reference-

management and mind-mapping software.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – information filtering.  

General Terms 
Algorithms, Design, Experimentation 

Keywords  
Dataset, recommender system, mind-map, reference manager, 

framework, architecture 

1. INTRODUCTION 
Researchers and developers in the field of recommender systems can 

benefit from publicly available architectures and datasets1. 

Architectures help with the understanding and building of 

recommender systems, and are available in various recommendation 

domains such as e-commerce [1], marketing [2], and engineering [3]. 

Datasets empower the evaluation of recommender systems by 

enabling that researchers evaluate their systems with the same data. 

                                                                 

 

1 Recommendation frameworks such as LensKit or Mahout may also be 

helpful for researchers and developers, but such frameworks are not the 

subject of this paper. 

Datasets are available in several recommendation domains, including 

movies2, music3, and baby names4.  

In this paper, we present the architecture of Docear’s research paper 

recommender system. In addition, we present four datasets 

containing information about a large corpus of research articles, and 

Docear’s users, their mind-maps, and the recommendations they 

received. By publishing the recommender system’s architecture and 

datasets, we pursue three goals.  

First, we want researchers to be able to understand, validate, and 

reproduce our research on Docear’s recommender system [4–10]: In 

our previous papers, we could often not go into detail of the 

recommender system due to spacial restrictions. This paper gives the 

information on Docear’s recommender system that is necessary to 

allow the re-implementation of our approaches and to reproduce our 

findings.  

Second, we want to support researchers when building their own 

research paper recommender systems. Docear’s architecture and 

datasets ease the process of designing one’s own system, estimating 

the required development times, determining the required hardware 

resources to run the system, and crawling full-text papers to use as 

recommendation candidates.  

Third, we want to provide real-world data to researchers who have 

no access to such data. This is of particular importance, since the 

majority of researchers in the field of research paper recommender 

systems have no access to real-world recommender systems [11]. 

Our datasets allow analyses beyond the analyses we have already 

published, for instance to evaluate collaborative filtering algorithms, 

perform citation analysis, or explore the use of reference managers.  

This paper will present related work, provide a general overview of 

Docear and its recommender system, introduce the architecture, and 

present the datasets. 

2. RELATED WORK 
Several academic services published datasets, and hence have eased 

the process of researching and developing research paper 

recommender systems. CiteULike5 and Bibsonomy6 published 

datasets containing the social tags that their users added to research 

                                                                 

 

2 http://grouplens.org/datasets/movielens/ 
3 http://labrosa.ee.columbia.edu/millionsong/ 
4 http://www.kde.cs.uni-kassel.de/ws/dc13/ 
5 http://www.citeulike.org/faq/data.adp 
6 https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/ 
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articles. The datasets were not originally intended for recommender 

system research but are frequently used for this purpose [12–14]. 

CiteSeer made its corpus of research papers public7, as well as the 

citation graph of the articles, data for author name disambiguation, 

and the co-author network [15]. CiteSeer’s dataset has been 

frequently used by researchers for evaluating research paper 

recommender systems [12], [14], [16–22]. Kris Jack et al. compiled 

a dataset based on the reference management software Mendeley 

[23]. The dataset includes 50,000 randomly selected personal 

libraries from 1.5 million users. These 50,000 libraries contain 4.4 

million articles with 3.6 million of them being unique. For privacy 

reasons, Jack et al. only publish unique IDs of the articles and no title 

or author names. In addition, only those libraries having at least 20 

articles were included in the dataset. Sugiyama and Kan released two 

small datasets8, which they created for their academic recommender 

system [24]. The datasets include some research papers, and the 

interests of 50 researchers. The CORE project released a dataset9 

with enriched metadata and full-texts of academic articles, and that 

could be helpful in building a recommendation candidate corpus.  

Architectures of research paper recommender systems have only 

been published by a few authors. The developers of the academic 

search engine CiteSeer(x) published an architecture that focused on 

crawling and searching academic PDFs [25], [26]. This architecture 

has some relevance for recommender systems since many task in 

academic search are related to recommender systems (e.g. crawling 

and indexing PDFs, and matching user models or search-queries 

with research papers). Bollen and van de Sompel published an 

architecture that later served as the foundation for the research paper 

recommender system bX [27]. This architecture focuses on 

recording, processing, and exchanging scholarly usage data. The 

developers of BibTiP [28] also published an architecture that is 

similar to the architecture of bX (both bX and BibTip utilize usage 

data to generate recommendations).   

3. DOCEAR AND ITS RECOMMENDER 

SYSTEM 
Docear is an open source literature suite for organizing references 

and PDFs, including the PDFs’ annotations. Docear is available for 

Windows, Mac OS, and Linux and offers a recommender system for 

publicly available research papers on the Web. In contrast to most 

other reference managers, Docear uses mind-maps for the 

information management. Figure 1 shows a screenshot depicting the 

management of PDFs in Docear, including annotations. A user can 

create several categories (e.g. “Academic Search Engines”) and sub-

categories (e.g. “Google Scholar”). Each category contains a number 

of PDFs, and for each PDF, its annotations that are made by the user 

– e.g. highlighted text, comments, and bookmarks – are displayed. If 

the cursor is moved over a PDF or annotation, the PDF’s 

bibliographic data such as the title and authors, is shown. 

For the remainder of this paper, it is important to note that each 

element in the mind-map – i.e. each category, PDF, or annotation – 

is called a “node”. Each node has some descriptive text (e.g. the 

category label or PDF’s file name), an option to a link to a file or 

web page (a click on the node opens the linked file or web page), and 

some further attributes such as the bibliographic data. For each node, 

the dates when the node was created, modified, and moved are 

                                                                 

 

7 http://csxstatic.ist.psu.edu/about/data 
8 http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html 
9 http://core.kmi.open.ac.uk/intro/data_dumps 

stored. If a node links to a PDF, the PDF’s title is extracted and 

stored as an invisible attribute to the node. A “circle” on a node 

indicates that the node has child nodes but that they are currently 

hidden in the mind-map. 

 
Figure 1: Screenshot of Docear 

 
Figure 2: User-interface of Docear's recommender system 

Every five days, recommendations are displayed to the users at the 

start-up of Docear. In addition, users may explicitly request 

recommendations at any time. Docear displays recommendations as 

a set of ten research papers, as long as ten papers are available to 

recommend, otherwise less recommendations are shown (Figure 2). 

A click on a recommendation opens the PDF in the user’s web 

browser. Users can rate each recommendation set on a scale of one 

to five. The rating is then used to evaluate the effectiveness of 

different recommendation algorithms.  

4. ARCHITECTURE  
Docear itself is a JAVA desktop software with its source code hosted 

on GitHub10. The recommender system is also primarily written in 

JAVA and runs on our web servers. The source code is not (yet) 

publicly available. To enable communication between the Desktop 

software and the servers, we implemented a RESTful Web Service. 

Figure 3 illustrates the architecture and the particular components, 

which are explained in detail in the following sections, along with 

technical details.  

                                                                 

 

10 https://github.com/Docear/ 



 

Figure 3: Architecture of Docear's research paper recommender system 

 

 



4.1 Web Service / API  
Docear’s RESTful Web Service (Jersey)11 is responsible for several 

tasks, including user registration and delivering recommendations. In 

Table 1, the most important methods relating to recommendations 

are listed. Third parties could use the Web Service, for instance, to 

request recommendations for a particular Docear user and to use the 

recommendations in their own application (if the third party knew 

the user’s username and password). However, it should be noted 

that, for now, we developed the Web Service only for internal use, 

that there is no documentation available, and that the URLs might 

change without prior notification.  

Table 1: POST and GET requests for Docear's web service 

Task URL Type 

Upload a mind-

map 

https://api.docear.org/user/{username}

/mindmaps/ 

POST 

Request 

recommendations 

https://api.docear.org/user/{username}

/recommendations/ 

GET 

Confirm the 

receipt of 

recommendations 

https://api.docear.org/user/{username}

/recommendations/{recommendationsS

etId} 

POST 

Download a 

recommended 

paper 

https://api.docear.org/ 
user/{username}/recommendations/full

text/{hash} 

GET 

Send rating https://api.docear.org/user/{username}
/recommendations/{recommendationsS

etId} 

POST 

4.2 Building the corpus 
The Spider crawls the Web for academic PDF files, which serve as 

recommendation candidates. Each PDF is converted into text, and 

the header information and citations are extracted. The text 

conversion is done with jPod12, a PDF library we found to be more 

effective than the commonly used PDFBox. The header extraction is 

done with ParsCit13 and Docear’s PDF Inspector [29]. The citation 

extraction is also conducted with ParsCit, which we modified to 

identify the citation position within a text14. Once all information is 

extracted, it is indexed with Apache Lucene15 and stored in Lucene’s 

file-based data storage.  

Instead of indexing the original citation placeholder with [1], [2], 

etc. the unique Docear ID of the cited document is indexed (e.g. 

dcr_doc_id_54421) (Figure 4). This allows to apply weighting 

schemes, such as TF-IDF to citations, i.e. CC-IDF [25], and 

searching with Lucene for documents that cite a certain paper. It also 

allows for the matching of user models and recommendation 

candidates based on terms and citations at the same time. For 

instance, a user model could consist of the terms and citation 

“cancer, sun, dcr_doc_id_54421, skin” and those papers would be 

recommended that contain the terms cancer, sun and skin and that 

cite the document dcr_doc_id_54421.  

In addition to the papers that were found by the Spider, we selected a 

few papers manually and added them to the corpus of 

                                                                 

 

11 http://jersey.java.net 
12 http://sourceforge.net/projects/jpodlib/ 
13 http://aye.comp.nus.edu.sg/parsCit/ 
14 Meanwhile, our modifications were integrated into ParsCit. 
15 http://lucene.apache.org 

recommendation candidates. These papers are about academic 

writing and search, i.e. topics we assume to be relevant for the 

majority of our users. These papers are recommended with the 

stereotype approach, which is later explained in detail. 

4.3 Collecting information about users 
Docear’s recommender system needs access to the users’ data, i.e. 

their mind-maps, to be able to infer the users’ information needs. To 

get access to the users’ mind-maps, Docear stores a copy of the 

mind-maps in a temporary folder on the users’ hard drive, whenever 

a mind-map was modified and saved by the user. Every five minutes 

– or when Docear starts – Docear sends all mind-maps located in the 

temporary folder to the Web Service. The Web Service forwards 

these mind-maps, i.e. XML files, to the Mind-Map Parser (JAVA), 

which is based on nanoXML16. All nodes of the mind-maps, 

including attributes (text, links to files, titles of linked PDFs, and 

bibliographic data) are extracted from the XML file and stored in a 

graph database (neo4j17). Citations in the mind-maps are replaced 

with the corresponding Docear-IDs, similarly to the replace-process 

of citations in the research articles (see section 4.2 and Figure 4). A 

‘citation’ in a mind-map can either be a link to a PDF file, or the 

bibliographic data that is attached to a node. This means, if a node in 

a mind-map links a PDF on the user’s hard drive, the PDF is 

identified (via its title) and the link in the mind-map is replaced with 

the Docear-ID of the cited article, linked PDF respectively. If the 

cited article is not already in Docear’s database, the article is added 

and a new Docear-ID is created.  

 
Figure 4: Converting in-text citations to Docear-IDs 

4.4 Generating user models & 

recommendations 
The recommendation engine (JAVA) is the central part of Docear’s 

recommender system. It creates new user models and 

recommendations whenever new mind-maps are uploaded to the 

server or after recommendations have been delivered to a user. 

Generating recommendations in advance has the disadvantage that a 

significant amount of computing time is wasted. Of 1.4 million 

generated recommendations, only 308,146 recommendations 

(21.3%) were delivered to the users. In other words, 79.7% of the 

computing power could have been saved if recommendations were 

                                                                 

 

16 http://nanoxml.sourceforge.net/orig/ 
17 http://www.neo4j.org/ 



only created when they actually were needed. However, on average, 

it took 52 seconds to calculate one set of recommendations with a 

standard deviation of 118 seconds, and users would probably not 

want to wait so long for receiving recommendations. This rather long 

computing time is primarily caused by the many statistics that we 

calculate for each set of recommendations, along with a few 

algorithms that require intensive computing power. We also run 

several additional services on the recommendation servers that 

require a lot of computing power (e.g. PDF processing), and this 

slows down the recommendation process. If we would disable 

statistics, concentrate on a few algorithms, and use a dedicated server 

for the recommender system, it should be possible to generate 

recommendations in real-time. However, since we need the statistics, 

and want to evaluate different variations of the recommendation 

approaches, pre-generating recommendation seems the most feasible 

solution to us.  

Docear’s recommender system applies two recommendation 

approaches, namely stereotype recommendations and content-based 

filtering (CBF). Every time the recommendation process is triggered, 

one of these approaches is randomly chosen.  

The stereotype approach [30] is chosen with a probability of 1%. It 

generalizes over all users, and assumes that they are all researchers 

(which is not exactly true, because some users only use Docear for 

its mind-mapping functionality). The recommender system then 

recommends papers that are potentially interesting for researchers, 

i.e. the books and research articles about academic writing that we 

manually added to the corpus (see 4.2). Compiling the stereotype 

recommendations requires a lot of labor and we primarily did this to 

use the results as a baseline to compare the CBF performance against 

it [31]. 

The content-based filtering approach analyzes the users’ mind-maps 

and recommends research papers whose content is similar to the 

content of the mind-maps. ‘Similarity’ is based on the number of 

terms or citations that user-models and research papers have in 

common. The user modeling process varies by a number of variables 

that are stored in the algorithms database (MySQL & Hibernate18). 

These variables are randomly arranged to assemble the final user-

modeling algorithm, each time recommendations are generated. In 

the first step, the feature type to use from the mind-maps is randomly 

chosen. The feature type may be terms, citations, or both. Then, a 

number of other variables are chosen such as the number of mind-

maps to analyze, the number of features the user model should 

contain, and the weighting scheme for the features. For instance, one 

randomly arranged algorithm might utilize the one hundred most 

recently created citations in the user’s mind-maps, weight the 

citations with CC-IDF, and store the five highest weighted citations 

as a user model. Another algorithm might utilize all the terms from 

the two most recently created mind-maps, weight terms based on 

term frequency and store the 50 highest weighted terms as user 

model.  

The user model is represented by a list of terms and/or citations that 

are supposed to describe the user’s information needs. The user-

modeling engine randomly chooses whether to store the user model 

as a weighted or un-weighted list in the database. An un-weighted 

list is a plain list of terms or citations such as sun, skin, 

dcr_doc_id_54421, cancer ordered by the terms’ and citations’ 

weight (the features are always sorted by weight, but the weight is 

                                                                 

 

18 http://hibernate.org/ 

discarded when storing the user model). The weighted-list is a vector 

in which the weights of the individual features are stored, in addition 

to the features themselves. Docear uses both weighted and un-

weighted lists to research the differences in their effectiveness.  

The matching module is responsible for finding the appropriate 

recommendations for a given user model. To match user models and 

recommendation candidates, Apache Lucene is used, i.e. the user 

model is sent as a search query to Lucene. From Lucene’s top 50 

search results, a set of ten papers is randomly selected as 

recommendations. Choosing papers randomly from the top 50 results 

decreases the overall relevance of the delivered recommendations, 

yet increases the variety of recommendations, and allows for the 

analyzing of how relevant the search results of Lucene are at 

different ranks. The exact matching algorithm is randomly arranged. 

Among others, the field at which the candidates Lucene should 

search for is randomly chosen, for instance in the title only, or in the 

candidates’ full-text.  

Once the recommendations are created, they are stored in the 

recommendation database (MySQL & Hibernate). The system stores 

for which user the recommendations were generated, by which 

algorithm, as well as some statistical information such as the time 

required to generate recommendations and the original Lucene 

ranking. The recommendations are not yet delivered to the user but 

only stored in the database. 

4.5 Delivering recommendations 
To display recommendations to a user, the Docear desktop software 

sends a request to the Web Service. The Web Service retrieves the 

latest created recommendations and returns them to Docear, which 

displays the recommendations to the user. The Web Service stores 

some statistics, such as when the recommendations where requested 

and from which Docear version. After recommendations are 

displayed to the user, a new set of recommendations is generated.  

Each recommendation set receives a label that is displayed in Docear 

above the recommendations (Figure 2). Some labels such as "Free 

research papers" indicate that the recommendations are free and 

organic. Other labels such as "Research papers (Sponsored)" indicate 

that the recommendations are given for commercial reasons. For 

each user, the label is randomly chosen, when the user registers. The 

label has no effect on how the recommendations are actually 

generated. We randomly assign labels only to research the effect of 

different labels on user satisfaction. For more information refer to 

[4].  

When users click on a recommendation, a download request is sent 

to Docear’s Web Service. The Web Service again stores some 

statistics, such as the time when the user clicked the 

recommendation. Then the user is forwarded to the original URL of 

the recommended paper. Forwarding has the disadvantage that 

papers occasionally are not available any more at the time of the 

recommendation since they were removed from the original web 

server. However, caching PDFs and offering them directly from 

Docear’s servers might have led to problems with the papers’ 

copyright holders.  

4.6 Offline evaluation 
The Offline Evaluator (JAVA) runs occasionally to evaluate the 

effectiveness of the different algorithms. The offline evaluator 

creates a copy of the users’ mind-maps and removes that citation that 

was most recently added to the mind-maps. In addition, all nodes 

from the copy are removed that were created after the most recent 

citation was added. The offline evaluator then selects a random 



algorithm and creates recommendations for the users. The offline 

evaluator checks if the removed citation is contained in the list of 

recommendations and stores this information in the database. It is 

assumed that if an algorithm could recommend the removed citation, 

the algorithm was effective. The more often an algorithm could 

recommend a removed citation, the more effective it is. For more 

details on the offline evaluator, and potential shortcomings of offline 

evaluations, refer to [5]. 

4.7 Technical details 
The recommender system runs on two servers. The first server is an 

Intel Core i7 PC with two 120GB SSDs, one 3 TB HDD, and 16 GB 

RAM. It runs the PDF Spider, PDF Analyzer, and the mind-map 

database (neo4j), and its load is usually high, because web crawling 

and PDF processing require many resources. The second server is an 

Intel Core i7 with two 750 GB HDDs, and 8 GB RAM. It runs all 

other services including the Web Service, mind-map parser, MySQL 

database, Lucene, and the offline evaluator. The server load is rather 

low on average, which is important, because the Web Service is not 

only needed for recommendations but also for other tasks such as 

user registration. While long response times, or even down times, for 

e.g. the PDF spider are acceptable, user registration should always be 

available. Overall, we invested around 14 person-months 

development time in the past three years to implement the 

recommender system19. This estimate does not include the 

development time for the Docear Desktop software.  

5. DATASETS 
We publish four datasets relating to the research papers that Docear’s 

spider found on the web (see 5.1), the mind-maps of Docear’s users 

(see 5.2), the users themselves (5.3), and the recommendations 

delivered to the users (see 5.4). Due to spacial restrictions, the 

following sections provide only an overview of the most important 

data, particularly with regard to the randomly chosen variables. 

Please note that all variables are explained in detail in the readme 

files of the datasets. For an empirical evaluation of the different 

variables please refer to [31], or analyze the datasets yourself. All 

datasets are available at http://labs.docear.org. 

5.1 Research papers 
The research papers dataset contains information about the research 

papers that Docear’s PDF Spider crawled, and their citations.  

The file papers.csv contains information about 9.4 million research 

articles. Each article has a unique document id, a title, a cleantitle, 

and for 1.8 million articles, a URL to the full-text is provided. The 

1.8 million documents were found by Docears PDF Spider, and for 

each of these documents, titles were extracted with Docear’s PDF 

Inspector or parsed from the web page that linked the PDF. The 

remaining 7.6 million documents in the dataset were extracted from 

the 1.8 million documents’ bibliographies. In this case, no full-text 

URL is available and the document’s title was extracted from the 

bibliography with ParsCit. Based on a small random sample of 100 

documents, we estimate that 71% of the articles are written in 

English. Other languages include German, Italian, Russian, and 

Chinese. It also appears that the papers cover various disciplines, for 

instance, social sciences, computer science, and biomedical sciences. 

However, several of the indexed documents are of non-academic 

                                                                 

 

19 This is a very rough estimate, as we did not keep track of the exact working 

hours for the recommender system.  

nature, and sometimes, entire proceedings were indexed but only the 

first paper was recognized.  

Document disambiguation is only based on the documents’ 

“cleantitle”. To generate a cleantitle, all characters are transformed to 

lowercase, and only ASCII letters from a to z are kept. If the 

resulting cleantitle is less than half the size of the original title, the 

original title is used as cleantitle – this prevents e.g. Chinese titles to 

be shortened to a string of length zero. If two documents have the 

same cleantitle, the documents are assumed identical. Comparing 

documents only based on such a simplified title is certainly not very 

sophisticated but it proved to be sufficiently effective for our needs. 

The file citations.csv contains a list of 572,895 papers with 7.95 

million citations. These numbers mean that of the 1.8 million PDFs, 

572,895 PDFs could be downloaded and citations could be extracted, 

and on average, each of the PDFs contained around 14 references. 

The dataset also contains information where citations occur in the 

full-texts. For each citing->cited document pair, the position of a 

citation is provided in terms of character count, starting from the 

beginning of the document. This leads to 19.3 million entries in 

citations.csv, indicating that, on average, each cited paper is cited 

around three times in a citing document. The dataset allows building 

citation networks and hence calculating document similarities, or the 

document impact. Since the position of the citations is provided, 

document similarity based on citation proximity analysis could be 

calculated, which we developed during the past years [32] and which 

is an extension of co-citation analysis.  

Due to copyright reasons, full-texts of the articles are not included in 

the dataset. Downloading the full-text is easily possible, since the 

URLs to the PDFs are included (as long as the PDFs are still 

available on the Web).  

5.2 Mind-maps / user libraries 
Every month, 3,000 to 4,000 newly created and modified mind-maps 

are uploaded to Docear’s server. Some mind-maps are uploaded for 

backup purposes, but most mind-maps are uploaded as part of the 

recommendation process. Information on the latter ones is provided 

in the mind-map dataset.  

The file mindmaps.csv contains information on 52,202 mind-maps 

created by 12,038 users who agreed that we could publish their 

information. Docear does not only store the latest version of a mind-

map but keeps each revision. Information about 390,613 revisions of 

the 52,202 mind-maps is also included in mindmaps.csv. This means, 

on average there are around seven to eight revisions per mind-map. 

All mind-maps and revisions in the dataset were created between 

March 2012 and March 2014. There are three different types of 

mind-maps. First, there are mind-maps in which users manage 

academic PDFs, annotations, and references (Figure 1). These mind-

maps represent data similar to the data included in the Mendeley 

dataset (see section 2). While Mendeley uses the term “personal 

libraries” to describe a collection of PDFs and references, Docear’s 

“mind-maps” represent also collections of PDFs and references but 

with a different structure than the ones of Mendeley. Second, there 

are mind-maps to draft assignments, research papers, theses, or 

books (Figure 2). These mind-maps differ from the first type as they 

typically contain only few PDFs and references, but they include 

additional data such as images, LaTeX formulas, and more text. The 

third type of mind-maps, are “normal” mind-maps that users create 

to brainstorm, manage tasks, or organize other information. Due to 

privacy concerns, this dataset does not contain the mind-maps 

themselves but only metadata. This includes a list of all the mind-

maps and revisions, their file sizes, the date they were created, and to 

which user they belong. The data may help to analyze how often 

http://labs.docear.org/


researchers are using reference management software, for how long 

they are using it, and how many papers they manage in their mind-

maps, personal collections respectively. 

The file mindmaps-papers.csv contains a list 473,538 papers that are 

linked eight million times in 12,994 mind-maps. This means, of the 

52,202 mind-maps, 24.8% contain at least one link to a PDF, and 

PDFs are linked 17 times in a mind-map on average. The paper IDs 

in mindmaps-papers.csv are anonymized and do not correlate with 

paper IDs from the research paper dataset, nor does mindmaps-

papers.csv contain titles of the linked papers. It should also be noted 

that the 473,538 papers are not necessarily contained in papers.csv as 

papers.csv contains only information of the publicly available PDFs 

and their citations. These limitations were made to ensure the 

privacy of our users.  

5.3 Users  
There are three types of users in Docear, namely registered users, 

local users, and anonymous users. Local users chose not to register 

when they install Docear. Consequently, they cannot use Docear’s 

online services such as recommendations or online backup, and we 

do not have any information about these users, nor do we know how 

many local users there are. Registered users sign-up with a 

username, a password, and an email address and they can use 

Docear’s online services. During the registration process, these users 

may provide information about their age and gender. Between March 

2012 and March 2014, around 1,000 users registered every month, 

resulting in 21,439 registered users. Anonymous users decline to 

register but still want to use some of Docear’s online services. In this 

case, Docear automatically creates a user account with a randomly 

selected user name that is tied to a users’ computer. Anonymous 

users cannot login on Docear’s website, but they can receive 

recommendations as their mind-maps are transferred to Docear’s 

servers, if they wish to receive recommendations. Due to spam 

issues, no new anonymous users were allows since late 2013. Until 

then, around 9,500 anonymous user accounts were created by non-

spammers.  

The file users.csv contains anonymized information about 8,059 of 

the 21,439 registered users, namely about those who activated 

recommendations and agreed to have their data analyzed and 

published. Among others, the file includes information about the 

users’ date of registration, gender, age (if provided during 

registration), usage intensity of Docear, when Docear was last 

started, when recommendations were last received, the number of 

created mind-maps, number of papers in the user’s mind-maps, how 

recommendations were labeled, the number of received 

recommendations, and click-through rates (CTR) on 

recommendations. The CTR expresses the ratio of received and 

clicked recommendations. If a user receives 100 recommendations, 

and clicked eight of them, CTR is 8%. CTR is a common 

performance measure in online advertisement and recommender 

systems evaluation and allows for the analyzing of the effectiveness 

of recommendation algorithms.  

The file users_papers.csv contains a list of 6,726 users and 616,651 

papers that the users have in their collections, i.e. mind-maps. This 

means, on average, each user has linked or cited 92 documents in his 

or her mind-maps. The paper IDs in users_papers.csv do not 

correlate with the IDs from the research paper dataset, to ensure the 

users’ privacy.  

The users-dataset may help to identify how differences between 

users affect users’ satisfaction with recommendations. For instance, 

we found that older users are more likely to click on 

recommendations than younger users [8], and that the labelling of 

recommendations has an effect on user satisfaction [4]. The dataset 

also allows analyses about the use of reference managers, for 

instance, how intensive researchers are using Docear.  

 

Figure 5: Screenshot of a research paper draft in Docear 

5.4 Recommendations  
Between March 2013 and March 2014, Docear delivered 31,935 

recommendation sets with 308,146 recommendations to 3,470 users. 

Of the delivered sets, 38.7% were explicitly requested by the users. 

The remaining 62.2% were delivered automatically when the Docear 

Desktop software was started. Among the 308,146 

recommendations, there were 147,135 unique documents. In other 

words, from Docear’s 1.8 million documents, 9% were actually 

recommended. The recommendation dataset splits into two files. 

The file recommendation_sets.csv contains information about the 

31,935 delivered recommendation sets. This includes the number of 

recommendations per set (usually ten), how many recommendations 

were clicked, the date of creation and delivery, the time required to 

generate the set and corresponding user models, and information on 

the algorithm that generated the set. There is a large variety in the 

algorithms. We stored whether stop words were removed, which 

weighting scheme was applied, whether terms and/or citations were 

used for the user modelling process, and several other variables were 

applied that are described in more detail in the dataset’s readme file.  

The file recommendations.csv contains information about the 

308,146 recommendations that Docear delivered. This information 

includes all details contained in recommendation_sets.csv and 

additional information, such as at which position a recommendation 

was shown, and which document was recommended (again, we 

anonymized the paper IDs).  

6. SUMMARY & FINAL REMARKS 
In this paper, we presented the architecture of Docear’s research 

paper recommender system, and introduced four datasets containing 

metadata about research articles, and information about Docear’s 

users, their mind-maps, and the recommendations they received.  

Docear’s architecture is unique in the domain of research paper 

recommendations. Most of the previously published architectures are 

rather brief, and architectures such as those of bX and BibTip focus 



on co-occurrence based recommendations. These approaches are 

primarily relevant for recommender systems with many users. 

Docear’s architecture is comprehensive, explaining the individual 

components, the required hardware, and the integrated software 

libraries. Hence, the architecture should provide a good introduction 

for new researchers and developers on how to build a research paper 

recommender system. Due to the focus on content-based filtering, 

the architecture is also relevant for building recommender systems 

for rather few users.  

The datasets are also unique. While the research paper dataset is 

rather small, and the metadata is probably of a rather low quality, the 

dataset contains 1.8 million URLs to freely accessible full-text 

articles that are from various research fields and languages, and the 

dataset contains information where citations in a paper occur. The 

mind-map dataset is smaller than the dataset e.g. of Mendeley, but it 

was not pruned, and hence allows for analyses for users with less 

than 20 papers in their collections. The dataset also contains the 

information of how often a paper occurs in a mind-map. This 

information could be used to infer implicit ratings that are not only 

binary (linked/not linked) but to weight the implicit rating. The 

datasets about Docear’s users and recommendations contain 

extensive information, among others, about users’ demographics, the 

number of received and clicked recommendations, and specifics 

about the algorithms that recommendations were created with. This 

data allows for analyses that go beyond those that we already 

performed, and should provide a rich source of information for 

researchers, who are interested in recommender systems or the use of 

reference managers. 

For the future, we plan to release updated datasets annually or bi-

annually, and we invite interested researchers to contact us for 

cooperation.  
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